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We examine the long-time behavior of A + B ~ 0 reaction-diffusion systems with 
initially segregated species A and B. All of our analysis is carried out for 
arbitrary (positive) values of the diffusion constants D A and D B and initial 
concentrations ao and bu of A's and B's. We divide the domain of the partial 
differential equations describing the problem into several regions in which they 
can be reduced to simpler, solvable equations, and we merge the solutions. Thus 
we derive general formulas for the concentration profiles outside the reaction 
zone, the location of the reaction zone center, and the total reaction rate. 
An asymptotic condition for the reaction front to be stationary is also derived. 
The properties of the reaction layer are studied in the mean-field approximation, 
and we show that not only the scaling exponents, but also the scaling functions 
are independent of DA, Da, ao and b o. 

KEY WORDS: Reaction kinetics: diffusion; segregation; partial differential 
equations. 

1. I N T R O D U C T I O N  

The study of the interfacial region formed in diffusion-limited A + B ~ 0 
type reactions between domains  of unlike species has attracted much 
current  interest)~--'~l A na tura l  way to examine this p roblem is to prepare 
a system with the componen t s  initially segregated a long the plane x = 0 ,  
and  then investigate the spat io temporal  evolut ion of their concent ra t ions  
PA and PB, and the reaction rate R. Such a geometry,  first studied by Gfilfi 
and  R/tcz 12~, has been investigated by means  of various methods,  including 
experiments,  ~3-5~ numerica l  s imulat ions,  ~6-9~ the renormal iza t ion  group 
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approach, ~~ analytical computations, 1~3-15~ and scaling 12"9' t6"17) and 
dimensional ~16 181 analyses. 

A standard way to treat the initially separated problem analytically is 
to solve the partial differential equations q2~ 

O P A = D A ~ - - R  l o t  

OpB 
ox- 02 R J = D  B ~ . - 

Ot 

(1) 

with the initial state given by 

pA(X, t = O) = aoH( --x)~ 
pa(x,t=O)=boH(x) ) (2) 

where pA(X, t) and pa(x, t) are the local concentrations of A's and B's, 
respectively, R is the reaction rate, H(x) denotes the Heaviside step func- 
tion, and ao, bo, DA and DB are some positive constants related to the 
initial concentrations of species A and B and their diffusion coefficients, 
respectively. It is customary ~2"8"9' t~. ~s-20~ to as sume  D A = D  a --= D, which 
leads to the conclusion that u(x, t)=pA--pa obeys the readily solvable 
diffusion equation O,u = DO~.u irrespective of R. Finally, some form of R 
must be assumed, and in most cases either the mean-field approximation 
R rz PAPa (refs. 2, 13, 15, 19) or its generalization R oc p~p~ (refs. 8, 9, 16, 
and 17) was adopted. 

With these assumptions, two fundamental concepts were developed, 
both referring to the long-time limit. According to the first one, ~2~ the long 
time behavior of the system inside the reaction layer can be described with 
a help of some scaling functions SA, Sa and SR through 

pA(x, t) ~ t-~'Sh (X--~ f(t)) (3) 

pa(x, t) oc t-;'sB (X--~ f(t)) (4) 

R(x, t) oc t-aSR (X--~ y(t)) (5) 

where xs(t) denotes the point at which the reaction rate R attains its maxi- 
mal value, and exponents e, fl, and y are some positive constants given, for 
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R oc p~p~, by y =  1 / ( m + n +  1), ~ =  1 /2 -y  and f l=  1 __~).19) The scaling 
ansatz is based on the assumption that the width w(t) of the reaction layer 
grows with time as t ~ with cc < 1/2, so that in addition to the diffusion 
length scale 2D ~ x / ~ ,  the problem possesses also another relevant length 
scale it, ~: t ~. 

According to the second theory, called the quasistationary approxima- 
tion~J6, ~9j the currents JA(t) and JB(t) of particles A and B arriving at the 
interface layer from the two densely occupied domains are changing so 
slowly that the relatively narrow interface has enough time to equilibrate. 
To equilibrate means here to reach a state completely determined by the 
current boundary conditions, i.e., by JA and JB. Mathematically this is 
equivalent to the assumption that the state of the reaction zone is entirely 
given by equations obtained from (1) by replacing their left sides, or the 
time derivatives, with zero. This leads to much simpler equations 

: t DB 

(6) 

which are to be solved with the boundary conditions OpA/OX--* - - JA ( / )  
and p B ~ 0  as x--* - m ,  and pA--*0, OpB/OX~JB(t) as x ~  +c~.  The 
most important feature of the quasistationary equations (6) is that they 
depend only on x, with time t being a parameter entering their solutions 
pA(X, t) and pB(X, t) only through the time dependent boundary currents 
JA and JB- 

It was conjectured by G/tlfi and Rficz 121 that the first of the above 
assumpt ions ,  D g = D B, is irrelevant with regard to the long-time behavior 
of the system, the ratio DA/D B affecting perhaps the form of the scaling 
functions SA, S~ and SR, but not the values of exponents cr fl, and y. This 
hypothesis was generally accepted after numericaP 6~ and experimental ~31 
verification. Alas, this verification encompassed only the case where the 
ratio DA/DB was of order 1, whereas it is known 116"2~ that if one of the 
diffusion constants is equal to zero, the mean-field exponents assume values 
entirely different from those predicted by Gfilfi and Rfi.cz, namely 0~ = 0, 
fl = 1/2, and y = 1/4. 

This situation improved when Lee and Cardy ~~ ~2~ presented a renor- 
malization group analysis of the general case of initially separated A + B --* 0 
systems with arbitrary positive values of diffusion constants D A and DB. 
In particular, they confirmed that the values of exponents ~, fl, and y do 
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not depend on the ratio DA/DB; they also conjectured that the form of the 
scaling functions SA, SB, and SR should be the same for any n o n z e r o  D g 

and DB. The aim of our paper is to present another approach to the 
general theory comprising the case of any positive diffusion constants D g 

and DB and initial concentrations ao and bo. 
Unfortunately, we know of only three successful attempts to derive the 

macroscopic form of R from the microscopic properties of the system. One 
of them is the 1D system with DB=0.1~41 DimensionaP 9' ,6. 18~ and renor- 
malization group ~~ analyses lead to another important conclusion that 
the mean-field approximation is valid in spaces of dimension higher than 
d,.= 2. The latter approach also enabled Howard and Cardy ~ ~ to derive 
the asymptotic (Ixl --, or)  form of R in the general case of any dimension 
d and with fluctuation effects taken into account. Therefore our basic equa- 
tion (1) might seem useful only for these three types of systems for which 
the form of R is known. In our approach, however, we will not need to 
impose any special restriction on the form of R. Instead, we will require 
that the solutions of ( 1 ) satisfy a few physically justifiable relations. There- 
fore our theory can be applied even to systems for which the form of R 
remains unknown, including experiments and microscopic models. In such 
cases verification of our postulates should be far easier than the task of 
finding the exact form of R, let alone solving (1) afterward. 

The paper is organized as follows. In the next section we present the 
assumptions upon which our theory is founded, as well as their brief physi- 
cal justification. The general theory is formulated in Section 3. In Section 4 
we use it to derive and discuss the scaling ansatz in the mean-field approxi- 
mation. Section 5 is devoted to conclusions. 

2. A S S U  M P T I O N S  

We will consider systems which can be described with the Gfilfi and 
R~icz equations (1) and the boundary conditions (2). We will assume that 
DA, DB, ao and b0 are some known positive constants. Our analysis will be 
based on a few physical assumptions: 

(i) At any time t > 0 there exists a unique point X/-(t) at which the 
reaction term R attains its maximal value, and a unique point Xo(t) at 
which DAPA(Xo, t ) -  DBpB(Xo, t)= O. 

(ii) The reaction is concentrated in a region [ x - : c r  ] ~ w( t )~  t ~ with 
0 < ~ <  1/2. Outside this region, for x~.v/--w there is PA ~PB, and for 
x~>xs+w we have PA ~PB. 
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(iii) 
mated by 

The evolution of PA in the region x "~-'~r-w can be approxi- 

pA(x, t ) =  a o - C A [ e r f ( x / ~ )  + 1] (7) 

where CA is a constant, and e r f (x ) -2z t - l / 2 jgexp( -p l  z) dr/ is the error 
function.~'-'-~ 

Similarly, for x >> x f +  w, the evolution of PB can be estimated by 

pa(x,  t) = b o + C a [ e r f ( x / ~ )  - 1 ] (8) 

where CB denotes another constant. Both C A and CB depend on the initial 
parameters ao, bo, DA, and D B. 

(iv) The quasistatic approximation is valid in the region 
__(DAt) 1/2 <~X ~. (Da t )  1/2 

The first assumption introduces two functions xf(t) and Xo(t), restricting 
the considerations to the cases where they are uniquely defined. Function 
.x~r identifies directly the location of the reaction layer at time t, and Xo is 
an auxiliary mathematical object helpful in examining the behavior of X r. 
That Xo exists for any t > 0 stems from the initial conditions (2). As for the 
second postulate, it is satisfied by all the A + B--* 0 interfacial systems 
examined so far. The third assumption comes from the observation that, 
due to postulate (ii), in the region x ~ x . r - w  the concentration of particles 
A is expected to be much greater than that of B's, the latter having to cross 
the whole reaction layer to get there. Therefore, the evolution of A's is 
practically unaffected by B's, and so it should be governed by the standard 
diffusion equation 6q,pA :-- DA~.pA. The particular, based on the error func- 
tion form (7) of its solution was predicted and experimentally confirmed 
by Koo and Kopelman? 3~ Notice also that for any time t such a form of 
PA guarantees that the relation lim . . . . . . .  pA=aO implied by the initial 
conditions (2) is also fulfilled. A similar argument leads to (8). As for the 
last postulate, the quasistationary approximation is based on the following 
observation. ~6~ The diffusion current of particles arriving at the reaction 
layer is J cc t  I/-', so the characteristic time scale on which this current 
changes is zj oc (d log J /d t ) -1  oc t, whereas the equilibration time of the 
reaction front is zr cc ~.~,-" oc t~; therefore ct < 1/2 implies that as time goes to 
infinity, the ratio r r / r j  goes to 0, validating the quasistatic approximation. 

As we mentioned above, we will not impose any explicit restrictions 
on the form of the macroscopic reaction rate R, requiring only that it be 
consistent with the above postulates. However, to investigate the behavior 



184 Koza 

of the A + B ~ 0 system inside the reaction zone we will need more detailed 
information about R. Therefore in Section 4 we will concentrate on the 
mean-field approximation R oz PAPB. 

3. A N A L Y S I S  

The following observation constitutes the basis of the analysis of our 
model. For sufficiently long time t, at any point x we can employ either 
assumption (iii) or (iv) or both of them (see Fig. 1). Therefore we can 
divide the x axis into several regions, and in each of them the initial 
problem of solving (1) can be reduced to a much simpler one. Then, the 
overlapping of the domains of applicability of (iii) and (iv) will enable us 
to merge the solutions. 

Consider first the region -Dv/-D~At ~ X ~ ~ .  By assumption (iv) the 
system is governed here by the quasistationary equations (6). They imply 
that ~(x ,  t) =- DBPB--  DAPA satisfies 02p/Ox 2 = 0. Therefore ~ is linear 
in x. Let J(t)  denote its slope. By definition of Xo we have 7t(Xo, t )=0 .  
Thus we arrive at the conclusion that at sufficiently long time t, for 
- ~ ,~ x ~ x / ~ a  t, we have 

D~pB -- DApA ~ J ( t ) ( x  -- xo(t)) (9) 

and so J A ( t ) = J ~ ( t ) = J ( t ) .  The notation f ( t ) ~ g ( t )  means l im,_~  f ( t ) /  
g(t)  = 1. 

Consider now the region - x/~A t ~ X ~ ,X)- -- W, SO that e -= .X~r -- x 
satisfies t = ~ ~ ?12 Applying assumption (ii) to (9), we can approximate 
the form of PA by 

pa(x ,  t) ~ -- D A I J ( t ) ( x  --Xo( t) ) (10) 

On the other hand, however, by assumption (iii), here PA can be as well 
expressed by Eq. (7). So we have 

G 
ao-- CA L k , ~ )  + 1j ~ - - D A I J ( t ) ( , ~ f ( t ) - - X o ( t ) - - e )  (11) 

and 

0 ( [ e f t (  x '~+11 ) _ D A , J ( t )  (12) 0x a o -  CA 
L \ x / 4 D A t )  .,l-~ 

By assumption (ii), for any x located outside the reaction layer, the 
ratio PA/PB will either converge to zero, or diverge to infinity as t ~  or. 
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Fig. 1. 

iv  
quas is ta t ionary  approximat ion  

4 
iii iii 

free diffusion of A's free diffusion of B's  
I "'" 14 "'' I " ' "  

- Dv'-D~at ~., - w ~s xl + w oo 

Schematic diagram of the regions of applicability of postulates (iii) and (iv). 
Asymptotically w(t)  oz t ~ ~ t t/'-. 

However, by definition of Xo, this ratio assumes the constant value D B / D  A 

at x--Xo.  So x o must lie inside the reaction layer. As its width grows as t ~, 
we conclude that there must exist a number  0 such that [x r(t) - Xo(t)[ ~< Ot ~. 
We can see now that in the long-time limit [ : c r -xo[  becomes negligibly 
small compared to e, which, in turn, gets negligibly small compared to t ~/2. 
Therefore we can drop e on the left hand side of (I1) and (12) and x f - x o  
on the rhs of (I 1 ). After these transformations the asymptotic value of the 
lhs o f ( l  l) turns out to be independent of e, whereas the rhs of ( l l )  
becomes proportional  to eJ(t). As e can vary between t ~ and /,1/2 we con- 
clude that J(t) e(t) goes either to 0 or to ~ .  The latter case is impossible 
because (11) approximates the value of PA, which must be finite. In the 
long-time limit we therefore have 

and 

J(t) e(t) --* 0 (13) 

Oo-C,,Iorf( 
L \ x / 4 D A t /  

J(,) c,, exp  4-----~A t j  (15) 

Similar arguments applied to the region x.r+ w ~ x ~ ~ lead to 

and 

b o + C . [ e r f ( x f ( ~ t )  " ] - I ]  ~ 0  (16) 
[_ \ x / 4 D B t /  J 

,,2 

(17) 

822/85/1-2-13 
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It follows from (14) and (16) that in the long-time limit 

.~r( t )/,fit ~ Cr 

where Cr is a constant given either by 

Cr = 2x/~A erf- t [(a0 -- CA)/CA ] 
or  

(18) 

(19) 

Cr = 2 x / ~  erf-I [ ( ca - bo)/Ca ] (20) 

Now (15), (17), and (18) imply that as time goes to infinity we have 

J( t) x/~t--* Cs (21) 

where Cj is another constant given either by 

Cj = CA ~ exp( - C}/4DA) 
or  

Cj = Ca ~ exp(-  C~ ~4D a) 

(22) 

(23) 

Notice that (21) is consistent with (13). 
So far we have introduced four constants CA, Ca, Cf and Cj. The first 

two of them, CA and Ca, control the asymptotic profile of the majority 
species outside the reaction flayer. The third constant, Cr, governs the 
location of the reaction layer center. Finally, through the formula Y(t) 
I R(x, t ) dx~  Cs/t 1/2, parameter Cj is related to the magnitude of the 
current J(t) of particles entering the reaction layer, or, equivalently, the 
total reaction rate at time t. Due to the form of the initial state (2) we 
expect 0xp  A ( 0 and O.,.pa >1 O, which implies CA > 0, Ca > 0, and Cj > 0. 

Equations (19), (20), (22), and (23) can be reduced to 

( -Cr "~ =ao x/~-~n Cr 
(24) 

(25) 

where 

�9 (x) - [ 1 -e f t (x) ]  exp(x 2) 

An important feature of r is that it diminishes monotonically from 
to 0 as x grows from -oo  to ~ .  This property guarantees that Eq. (24) 
always has a unique solution Cf= Cs(ao/b o, D A, DB), which, moreover, 
can be readily found numerically. The only problem that can appear while 
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solving (24) numerically is that when x is positive, q~(x) is a product of a 
very small and a very big number. For  this reason, if x is greater than 5, 
we suggest using the asymptotic form qS(x)~ 1/(,4/-~x), which comes from 
the asymptotic properties of the error function erf. 122~ 

With Cf computed from (24), the values of CA, Ca and C,  can now 
be calculated from (19), (20), and (22). The opposite statement is also true: 
if we know (e.g., from an experiment) the values of CA, CB, Crand C.,, our 
equations determine uniquely the values of ao, bo, DA, and D a. 

The immediate consequence of (24) is that the sign of C r is determined 
by the sign of ao x/~A/(bo x / ~ a ) -  1. In particular, we conclude that 

Cr=O.~aox /~A=box /~B (26) 

This formula is important for planning experiments, as it clarifies the way 
the initial concentrations of the species should be chosen in order to have 
the reaction layer move asymptotically as slowly as possible. Condition 
(26) is consistent with that of Jiang and Ebner, 16~ who, by numerical 
examination of the mean-field approximation R oc PAPB, found a stronger 
relation x/ .= 0 r ao x /~A = bo x//-DBB. Our general formula, derived for any 
reaction term R, implies only that with this particular choice of the initial 
parameters can the function .x(; not be changing as fast as t ~/2. An example 
of a system where Ct.=O and x/ ( t )  oc t = was investigated in ref. 17. 

Equation (24) enables us also to observe a striking similarity between 
the long- and short-time behavior of .x~;. According to ref. 13, in the short- 
time limit the reaction term does not affect the solutions o f ( l ) ,  and so PA 
and Pa assume the same forms as in the readily solvable case R = 0. The 
point x rcan  be then found as the point at which OR/Ox=O. For R oc p'~p'~ 
such a procedure yields l im,_ o .x~//x/~ --- Co, where Co can be found from a 
relation very similar to that of (24), 

Co ~ mx/~. -Co 
(27) 

4. T H E  R E A C T I O N  L A Y E R  

In the previous section we carried out our analysis without imposing 
any restrictions on the form of the macroscopic reaction term R. As we 
now proceed to examine the asymptotic properties of the reaction layer, we 
will obviously need more specific information about R. Therefore we will 
concentrate on the mean-field approximation R=kpApB, k = c o n s t ,  still 
allowing ao, bo, DA, and DB to take any positive values. 
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By assumption (iv) we expect that in the region --(DAt)l/2~X~ 
(DBt) ~/2 we can apply the quasistatic approximation equations (6). Let 
,OA(X , t) and pB(x, t) denote their solutions for some values of D A ,  D B ,  

x0(t), and J(t). By the following linear transformation we introduce two 
new functions of a single variable ~A(Z) and ~n(z): 

where 

pA(x, t) = r/A(t) )A[(X -- Xo(t))/w(t) ] 
pB(x, t) = qB(t) ,6B[(X-- Xo(t))/w(t)] 

(DADB'~I/3=(DADB'~I/3tl/6 
w ( t ) - \  kJ(t) J \ kC~ J 

(28) 

(29) 

qA(t) J(t ) w(t ) /DO\k }'/3 f Cs'~2/3 t_,/3 (30) 

J/,) , , , ( , )  
,tB(t)- b-~ = \ T }  \D-BB/ t-"3 (31) 

Denoting/~(x) -=/~a(X)/~B(x), we have also 

R(x, t) = kpApB = C4/3(DADB) -1/3 kl/at-2/3_R[(x -Xo)/W(t)] (32) 

The essential property of pA(X) and ~s(x) is that they constitute the 
particular solution to Eq. (6) with D h = D B -~ J =  k = 1 and Xo = 0. There- 
fore, by symmetry,/~(x) assumes its maximal value for x = 0, and so Eq. (32) 
implies that R attains the maximal value at x = Xo. In the long-time limit 
we can therefore identify .x~r with Xo. Comparing now (28) and (32) with 
the scaling ansatz (3)-(5), we see that we can also identify/5 g with SA, Pa 
with Sa, and R with SR. Therefore not only are the above formulae consis- 
tent with Gfilfi and Rficz's scaling ansatz, but through Cs(a o, bo, DA, Da} 
they also exactly relate the quantities of physical importance [e.g., w(t)] to 
the parameters of the system ( D A ,  DB, a0, bo, and k). 

Because (28) can be applied to systems with any positive values of 
"external" parameters a o, bo, DA, DB and k, we arrive at the conclusion 
that the long-time evolution of initially segregated A + B ~ 0 systems is 
even more universal than was predicted by GMfi and R~cz; namely, not 
only the scaling exponents, but also the form of the scaling functions does 
not depend on the external parameters. Therefore, to find the scaling 
properties of the reaction layer it is sufficient to concentrate on the simplest, 
symmetric c a s e  D A = DB and a o = bo. 
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Notice that we have achieved these results by means of a simple linear 
transformation (28). In this way we took advantage of the very feature of 
Eqs. (1) and (6) that prevents them from being solved analytically-- 
nonlinearity. 

The above analysis is straightforward and can be easily generalized for 
many other reaction terms R. In particular, for R = k p ~ p ~ ,  with k = const 
and m, n being any (positive) real numbers, the following relation should 
be used instead of (29): 

Y)m/- )"  k -  I / 1  . . . . . . .  (33) W m + n + l  ~ ~ A ~ B , ~  

This formula, together with (21), (30), and (31 ), generalizes the scaling theory 
of Cornell eta/. (9) for the case of any positive ao, bo, DA, DB, m, and n. 

5. C O N C L U S I O N S  

We have investigated the long-time behavior of the concentrations PA 
and PB of phases A and B in the G&lfi and R~,cz problem. Our analysis is 
the first analytical attempt to consider it in the general case of arbitrary 
positive initial concentrations ao and bo and diffusion constants D A and Da 
of A's and B's. 

Our approach is. very general, as it does not impose any restrictions on 
the form of the macroscopic reaction rate R. Instead, it is based on the 
assumption that in the long time limit PA and PB satisfy a few physically 
justifiable relations. Therefore our theory can be applied to various 
systems, including those for which the form of the macroscopic reaction 
rate R remains unknown. Another peculiar feature of our theory is that, 
unlike most previous studies, it does not concentrate on the investigation 
of the reaction layer only, but takes into account the properties of the 
whole, infinite system. 

In this way we managed to derive general formulas for the concentra- 
tion profiles of the majority species outside the reaction layer, the location 
of the layer, and the total reaction rate. It is interesting to notice that 
these quantities turned out to be independent of R. We also derived 
analytically Jiang and Ebner's condition for the reaction front to be 
asymptotically stationary. This relation also turned out to be independent 
of R. These results correspond to the recent findings based on dimensional 
analysis]9, 16, 181 according to which the scaling properties of the reaction 
layer are independent of the form of R. 

Next we derived the general scaling ansatz for the mean-field approxi- 
mation. We gave the formulas which exactly relate some quantities of 
physical importance, (e.g., the width w of the reaction layer) to the external 
parameters of the system a 0, bo, DA, Ds and k. It turned out that not only 
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the scaling exponents, but also the forms of the scaling functions are inde- 
pendent of the values of these parameters. This justifies the customary 
approach of examining the properties of the reaction layer only in the 
simplest, symmetric case ao = bo and DA = DB. 

Our work suggests also that the behavior of the reaction-diffusion 
system can be understood as a subtle interplay between two scaling regimes. 
The first one is valid far from the reaction zone, where the densities of 
particles A and B assume the scaling forms typical of purely diffusive 
systems: pA(X, t) .~ ~PA(X/t 1/'-) and pa(x, t) ~ ~a(.x'/tJ/2). These scaling laws 
determine also the location of the point :~r(t) of the maximal reaction and 
the magnitude of the current J(t) of the particles entering the reaction zone. 
However, at -vr the spatial derivatives of ~UA and ~u B suffer discontinuity. 
Therefore in the vicinity of .x)a new form of scaling develops, and PA and 
PB assume the form pA(N, t ) =  SA(.X'/I ~) and pa(:c, t ) =  SB(x/ t  =) with ~ < 1/2. 

Although we confined our considerations to the long-time limit, it 
would be interesting to combine our results with those of Taitelbaum 
etal. (13) for short and intermediate times. We believe that the striking 
similarity between Eqs. (24) and (27) is not accidental and should lead to 
a general theory comprising the short-, intermediate-, and long-time limits. 
The first attempt in this direction has already been made. (-'t) 

Notice also that the quasistationary approximation leads to new 
definitions of "short"-, "intermediate"-, and "long"-time regimes. Namely, 
we can define them as the time intervals in which the reaction term in the 
vicinity of .x~r is vanishingly small compared to the time derivative ("short 
time"); or the interval in which they are of similar magnitude ("inter- 
mediate time"); or the interval in which it is the time derivative that can 
be neglected ("long time"). 

Another interesting problem concerns the limit DA ---' 0 with other exter- 
nal parameters fixed. In this limit the scaling exponents (in the mean-field 
approximation) are expected to change from ct = 1/6, fl = 2/3 to ~ = 0, fl = 1/2. 
A paper in which this problem is examined within the framework of the 
theory presented here is under preparation. We mention here only that as 
DA goes to 0, the time at which the mean-field system reaches the long-time 
regime can be shown to go to infinity, so the case DA = 0 can be considered 
as the case where the system always remains in the "intermediate"-time regime. 
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